

Free Coloring Algorithms!!

Restricted Coloring Problems on Restricted Classes of Graphs

Restricted Coloring Problems

- Distance-1 (or proper) coloring: adjacent vertices receive distinct colors
- Acyclic coloring: proper coloring with no 2-colored cycle
- Star coloring: proper coloring with no 2-colored P_4

 $\chi(G) \leq \chi_a(G) \leq \chi_s(G)$ and $\Phi(G) \supseteq \Phi_a(G) \supseteq \Phi_s(G)$

How can we use algorithms for one coloring problem to solve another?

Theorem (Gebremedhin et. al., 2008). If G is a chordal graph, then every proper coloring of G is also an acyclic coloring.

algorithm for Chordal graphs can be colored in linear time \Rightarrow acyclic coloring on chordal graphs!

When are Two Problems Equivalent?

A graph G is even-hole-free if it does not contain an induced cycle with an even number of vertices.

Theorem. A graph G is even-hole-free if and only if every distance-1 coloring of G is also an acyclic coloring.

Corollary. If G is an even-hole-free graph, then $\chi(G) = \chi_a(G)$.

Corollary. Any algorithm for finding an optimal coloring of an even-holefree graph will also find an optimal acyclic coloring.

Distance-1 ⇔ Star

A graph is *trivially perfect* if it does not contain C_4 or P_4 as an induced subgraph.

Theorem. A graph G is trivially perfect if and only if every distance-1 coloring of G is also a star coloring.

Corollary. If G is a trivially perfect graph, then $\chi(G) = \chi_a(G) = \chi_s(G)$.

Acyclic ⇔ Star

A graph is a cograph if it does not contain P_4 as an induced subgraph.

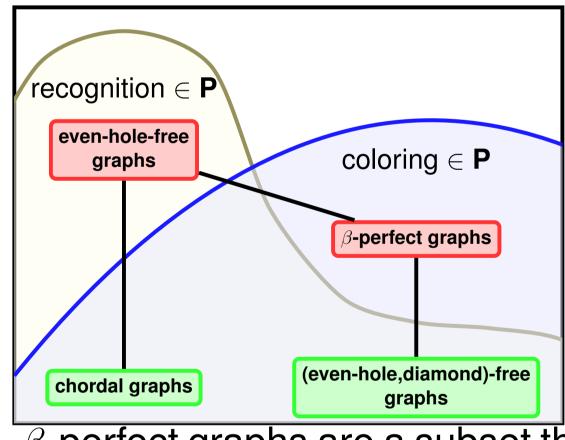
Theorem. A graph G is a cograph if and only if every acyclic coloring of G is also a star coloring.

Corollary. If G is a cograph, then $\chi_a(G) = \chi_s(G)$.

Algorithms

Acyclic coloring

If we know our graph is even-hole-free, we can simply run any algorithm/heuristic for proper coloring. However, it is not currently known whether even-hole-free graphs can be colored optimally in polynomial time.



 $\overline{\beta}$ -perfect graphs are a subset that can be colored in polynomial time, but no efficient recognition algorithm is known!

The class in the following theorem is a proper subclass of the β -perfect graphs.

Theorem. There exists a linear-time algorithm for finding an optimal acyclic coloring of (even-hole, diamond)-free graphs.

However, even-hole-free graphs are (currently) costly to recognize ($O(n^{15})$). But we may be able to avoid recognition.

Problem: Find an efficient robust algorithm for coloring even-hole-free graphs.

Star coloring

Theorem. There exists a linear-time algorithm for finding an optimal star coloring of a cograph G. What about the complexity on other classes? The split graphs are an interesting case:

Problem: Determine the complexity of star coloring on split graphs.

Unifying Concept: Forbidden Subgraphs

Generalizing to other restricted coloring problems:

- *Distance-2* coloring: every 2-colored induced subgraph is a matching.
- Caterpillar coloring: every 2-colored induced subgraph is a disjoint collection of caterpillars.
- Path (or linear) coloring: every 2-colored subgraph is a disjoint collection of paths.
- etc...

